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We present a study of the effects of nanoconfinement on a system of hard Gaussian overlap particles
interacting with planar substrates through the hard-needle-wall potential, extending earlier work by two of us
�D. J. Cleaver and P. I. C. Teixeira, Chem. Phys. Lett. 338, 1 �2001��. Here, we consider the case of hybrid
films, where one of the substrates induces strongly homeotropic anchoring, while the other favors either weakly
homeotropic or planar anchoring. These systems are investigated using both Monte Carlo simulation and
density-functional theory, the latter implemented at the level of Onsager’s second-virial approximation with
Parsons-Lee rescaling. The orientational structure is found to change either continuously or discontinuously
depending on substrate separation, in agreement with earlier predictions by others. The theory is seen to
perform well in spite of its simplicity, predicting the positional and orientational structure seen in simulations
even for small particle elongations.
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I. INTRODUCTION

It is often the case, in nature as in human affairs, that the
most interesting phenomena occur at boundaries. A fluid in
contact with a solid substrate may grow phases that are only
metastable in bulk; it may or may not cover that substrate
completely, or its constitutent particles may acquire posi-
tional order as a result �see, e.g., �1� for a review�. If in
addition the fluid particles are able to order orientationally, as
in liquid crystals �LCs�, even richer behaviors may be ob-
tained. Most substrates favor a particular alignment, which is
transmitted to the bulk fluid through a mechanism called
anchoring �2�. The most common arrangements are homeo-
tropic �i.e., perpendicular to the surface�, planar �i.e., parallel
to the surface�, and tilted. A range of azimuthal anchoring
states are also possible. Upon change of experimental condi-
tions, modification of the surface arrangement can be ob-
served to lead to a change in the bulk alignment; such an
event is called an anchoring transition �2�.

Because they are optically anisotropic, LC materials play
a key role in many display technologies �see, e.g., �3��. Typi-
cally an LC layer is sandwiched between suitably prepared
substrates, which may favor the same �symmetric� or differ-
ent �hybrid� alignments. An electric field is then used to de-
viate the orientational order profile from that induced by the
substrates alone. While the conventional �and highly success-
ful� twisted-nematic �TN� cell �3� can be thought of as a
hybrid geometry, a more recent realization is the hybrid
aligned nematic �HAN� cell of Bryan-Brown et al. �4�, which
has led to a practical realization of a bistable device. Unlike
the TN cell, a bistable device has two optically distinct,
stable states and an applied voltage is only needed when
switching between them. The consequent energy savings are
substantial.

Hybrid aligned nanometrically thin LC films have also
attracted academic interest. For example, Vandenbrouck et
al. �5� have observed spinodal dewetting of the nematogen
5CB spun-cast onto silicon wafers. In these experiments, hy-

brid anchoring was enforced by conflicting boundary condi-
tions: orthogonal at the free surface and planar at the silicon
substrate. Films thicker than 20 nm were found to be stable,
while thinner ones broke up into islands, which subsequently
thickened and merged. This was initially interpreted in terms
of competition between elasticity and van der Waals forces
�5�, though an alternative explanation based on fluctuation-
induced interactions was also proposed �6�. Very recently, a
more comprehensive experimental study of such systems has
been undertaken �7�, which concluded that neither of these
theoretical descriptions is robust for film thicknesses below
50 nm. Instead, the authors of �7� called for a theoretical
description capable of recognizing the molecular structure
within such film. We address this directly in this paper.

Applications based on hybrid aligned LC films have also
been considered. For example, the Abbott group has investi-
gated the use of hybrid aligned LC films confined between
air and water as a novel sensor system �8�. Here, by varying
the surfactant concentration at the LC-water interface, it has
proved possible to switch in and out of the hybrid aligned
state, thus giving an easy-to-read surfactant detector. Hybrid
aligned LC confinement is also pertinent to some of the
many fascinating LC colloid systems devised in recent years
�9�. Specifically, this is relevant for LC systems loaded either
with mixtures of colloidal species with competing surface
alignments or with Janus-type particles �10� featuring com-
peting preferred alignments on different regions of each par-
ticle. Such systems have the potential to exhibit qualitatively
different particle-particle interactions and self-assembled
structures from those observed thus far �11�.

In a previous paper �12� we reported computer simula-
tions of a discontinuous structural transition in a thin hybrid
film obtained using a hard-particle LC model. Then in �13�
we showed how the simple Onsager approximation of
density-functional theory �DFT� could provide a semiquanti-
tatively accurate description of the structure of a fluid of hard
rods confined between two hard, impenetrable walls, pro-
vided allowance was made, in a phenomenological way, for
the incorrect prediction of the location of the isotropic-
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nematic �I-N� transition. We later applied the same formal-
ism to symmetric films confined between flat substrates of
variable penetrability, in order to mimic different anchoring
conditions �14�, and discussed their relevance in the context
of interactions between �large� inclusions in a nematic col-
loid. Here we return to the more challenging topic of hybrid
aligned films, this time comparing simulation outputs with
DFT predictions. Our aim is to show that the richer anchor-
ing behavior of these systems can also be fairly well de-
scribed by our simple DFT with a standard modification. It
was not our intention to perform an exhaustive study of cap-
illary nematization, adsorption, wetting transitions, or other
orientationally ordered phases of confined elongated par-
ticles. Although such a complete picture is definitely worth
pursuing and DFT is very likely the appropriate tool to arrive
at it, the sheer number of relevant variables �pore size, an-
choring strengths, density and particle elongation, etc.� man-
dates a step-by-step approach. Furthermore, notice that we
are not �yet� after quantitative agreement between theory and
simulation, since our version of DFT is much too simple.

The remainder of this paper is organized as follows: in
Sec. II we recapitulate the model used and in Sec. III the
theory of �13,14�, both modified to allow for unequal anchor-
ings at the confining substrates. We also introduce a simpli-
fied form of Parsons-Lee rescaling for a more accurate loca-
tion of the I-N transition. Then in Sec. IV we present DFT
and Monte Carlo �MC� simulation results for the density and
order parameter profiles of LC films subject to hybrid an-
choring conditions. In particular, we examine the effect of
film thickness on whether the structure varies smoothly or
discontinuosly on going from one substrate to the other. Fi-
nally in Sec. V we discuss the potential and limitations of our
approach, and outline some directions for future research.

II. MODEL

Following established practice in the field of generic-
model LC simulation �15�, we consider a purely steric mo-
lecular model of elongated particles. Specifically, we take
uniaxial rod-shaped particles represented by the hard Gauss-
ian overlap �HGO� potential �16�:

U12�r12,�1,�2� = �0 if r12 � ��r̂12,�1,�2� ,

� if r12 � ��r̂12,�1,�2� ,
� �1�

where �i= ��i ,�i� are the polar and azimuthal angles describ-
ing the orientation of the long axis of particle i and r̂12
=r12 /r12 is a unit vector along the line connecting the centers
of the two particles. In this model, the contact distance is that
determined by Berne and Pechukas �17� when they consid-
ered the overlap of two ellipsoidal Gaussians, given by

��r̂12,�1,�2� = �0�1 −
1

2
	� �r̂12 · û1 + r̂12 · û2�2

1 + 	�û1 · û2�

+
�r̂12 · û1 − r̂12 · û2�2

1 − 	�û1 · û2� ��−1/2

, �2�

where ûi= �cos �i sin �i , sin �i sin �i , cos �i� and 	= �
2

−1� / �
2+1�, 
 being the particle length to breadth ratio

�L /�0. For moderate 
, the HGO model is a good approxi-
mation to the hard ellipsoid �HE� contact function �18,19�;
furthermore, their virial coefficients �and thus their equations
of state, at least at low to moderate densities� are very similar
�20�. However, this is no longer true of highly nonspherical
particles �16,21�, for which the behaviors of the two models
differ appreciably �22�. Finally, HGOs have the considerable
computational advantage over HEs that ��r̂12,�1 ,�2�, the
distance of closest approach between two particles, is given
in closed form �23�.

The HGO model is the hard-particle equivalent of the
much-studied Gay-Berne model �24�. The phase behavior of
the HGO model is density driven and fairly simple, compris-
ing only two noncrystalline phases: isotropic and �for 
	

�3�
nematic fluids at, respectively, low and high number densi-
ties �*=��0

3. The isotropic-nematic phase-coexistence densi-
ties have been located for various particle elongations in a
series of previous MC simulation studies �22,25,26�; for the
most commonly used elongation of 
=3, the transition oc-
curs for �*
0.30 with a slight system-size dependence.

Particle-substrate interactions have been modeled, as in
�12,14�, by a hard-needle-wall �HNW� potential

VHNW�z,�� = �0 if �z − z0
�� �

1

2
�0
S cos � ,

� if �z − z0
�� �

1

2
�0
S cos � , �3�

where =1 /kBT and the z axis has been chosen to be per-
pendicular to the substrates, located at z=z0

� ��=1,2�. 0
�
S�
 sets the length of the needle with which the sub-
strate interacts via L=
S�0. This affords us a degree of con-
trol over the anchoring properties: physically, 0�L��L cor-
responds to a system where the molecules are able to embed
their side groups, but not the whole length of their cores, into
the bounding walls. Varying L between 0 and �L is therefore
equivalent to changing the degree of end-group penetrability
into the confining substrates. In an experimental situation,
this might be achieved by manipulating the density, orienta-
tion, or chemical affinity of an adsorbed surface layer. The
value of L can be set independently at either substrate or,
indeed, allowed to vary within one or both of the substrates
�27�. In this way, symmetric, hybrid, and patterned anchoring
conditions can all be obtained from this one model. Other
choices of wall potential are, of course, possible, which can
be derived using the results of �19�, and may in some cases
be more desirable—e.g., for hard biaxial particles.

We have investigated the HGO+HNW model in a series
of previous studies of LCs confined in slab geometry. Our
work was preceded by related simulations by Allen �28�, in
which the particle centers of mass were taken to interact
sterically with the substrate �corresponding to the HNW po-
tential with L=0�. More recently, a discotic equivalent has
been developed by Pineiro, Galindo, and Parry �29�. Finally,
we should mention a DFT calculation of the structure of a
hybrid aligned HGO film performed by de Vos and Baus
�30�, for the specific geometry of the TN cell, using the On-
sager approximation and Rapini-Papoular-type anchoring po-
tentials �31�.
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III. THEORY

In order to find the equilibrium density distribution of a
HGO film, we start from the grand-canonical functional �32�:

����r,��� = F���r,���

+ � ��
�=1

2

VHNW��, �z − z0
��� − ��

���r,��dr d�

=� ��r,���ln ��r,�� − 1�dr d�

−
FHS

exc/N
8�v0

� ��r1,�1�f12�r1,�1,r2,�2�

���r2,�2�dr1d�1dr2d�2

+ � ��
�=1

2

VHNW��z − z0
��,�� − ��

���r,��dr d� , �4�

where F���r ,��� is the intrinsic Helmholtz free energy
of the inhomogeneous fluid, f12�r1 ,�1 ,r2 ,�2�
=exp�−U12�r1 ,�1 ,r2 ,�2��−1 is its Mayer function, � is
the chemical potential, z0

� ��=1,2� are the positions of the
two substrates, and because we are dealing with hard-body
interactions only, for which the temperature is an irrelevant
variable, we can set =1 /kBT=1 in all practical calculations
�we retain it in the formulas for generality�. ��r ,�� is the
density-orientation profile in the presence of the external po-
tential VHNW�z ,��; it is normalized to the total number of
particles N,

� ��r,��dr d� = N , �5�

and is related to the probability that a particle positioned at r
has orientation between � and �+d�. From Eq. �1� it fol-
lows that the interaction term in Eq. �4� is just the excluded
volume of two HGO particles, weighted by the density-
orientation distributions ��r ,��. The prefactor multiplying
this term contains FHS

exc, the Carnahan-Starling excess free
energy of the reference hard-sphere fluid of the same bulk
packing fraction �=�v0= �� /6�
��0

3 as the HGO fluid, given
by �33�

FHS
exc

N
=

�4 − 3���
�1 − ��2 . �6�

This is a simplified implementation of the Parsons-Lee den-
sity rescaling �34�, which amounts to �approximately� sum-
ming the higher virial coefficients. In the spirit of �35�, this
prefactor is a function of the bulk density, and not of the
local density, which should be valid provided the density
does not exhibit too sharp spatial variations. Equation �4� is,
thus, the “corrected” Onsager approximation to the free en-
ergy of the confined HGO fluid, which we expect to perform
better for particle elongations 
�� inasmuch as structure is
determined by location in the phase diagram. We do not ex-

pect, however, to see any new structure that is not captured
by the Onsager approximation, since what we are doing is a
simple density rescaling. More sophisticated approaches ex-
ist �see the discussion in Sec. V�, but our purpose, as stated
above, was to establish just how well we can describe an-
choring phenomena using the simplest possible microscopic
treatment.

Because the particle-substrate interaction, Eq. �3�, only
depends on z and �, it is reasonable to assume that there is no
in-plane structure, so that all quantities are functions of z
only. Then Eq. �4� simplifies to

����z,���
Sxy

=� ��z,���ln ��z,�� − 1�dz d�

−
�1 −

3

4
���

2�1 − ��2 � ��z1,�1���z1,�1,z2,�2�

���z2,�2�dz1d�1dz2d�2

+ � ��
�=1

2

VHNW��z − z0
��,�� − ��

���z,��dz d� , �7�

where Sxy is the interfacial area. ��z1 ,�1 ,z2 ,�2� is now the
area of a slice �cut parallel to the bounding plates� of the
excluded volume of two HGO particles of orientations �1
and �2 and centers at z1 and z2 �36�, for which an analytical
expression has been derived �23�. Note that each surface par-
ticle experiences an environment that has both polar and
azimuthal anisotropy, as a consequence of the excluded-
volume interactions between the particles in addition to the
“bare” wall potential.

Minimization of the grand canonical functional, Eq. �7�,

�����z,���
���z,��

= 0, �8�

yields the Euler-Lagrange equation for the equilibrium
density-orientation profile,

ln ��z,�� = � −
�1 −

3

4
��

�1 − ��2 ��
��z,�,z�,�����z�,���dz�d��,

�9�

where the effect of the wall potentials, given by Eq. �3�, has
been incorporated through restriction of the range of integra-
tion over �:

��
d� = �

0

2�

d��
�−�m

�m

sin �d� = �
0

2�

d��
−cos �m

cos �m

dx ,

�10�

with
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cos �m = �1 if �z − z0
�� �

L

2
,

�z − z0�
L/2

if �z − z0
�� �

L

2
, �11�

z0
� being, we recall, the position of substrate �.

It is clear from the structure of Eq. �9� that � is the
Lagrange multiplier associated with requiring that the mean
number of particles in the system be N. We are therefore at
liberty to fix either � or N �see also discussion in �28��: as in
earlier work, we opt for the latter, since it allows closer con-
tact with �constant NVT� simulation.

Once ��� ,z� has been found, we can integrate out the
angular dependence to get the density profile

��z� =� ��z,��d� �12�

and use this result to define the orientational distribution

function �ODF� f̂�z ,��=��z ,�� /��z�, from which we can
calculate the orientational order parameters in the laboratory-
fixed frame �37�:

��z� = �P2�cos ��� = Qzz, �13�

��z� = �sin 2� sin �� =
4

3
Qyz, �14�

��z� = �sin 2� cos �� =
4

3
Qxz, �15�

��z� = �sin2 � cos 2�� =
2

3
�Qxx − Qyy� , �16�

��z� = �sin2 � sin 2�� =
4

3
Qxy , �17�

where �A�=�A f̂�z ,��d�. These are the five independent
components of the nematic order parameter tensor, Q�

= � 1
2 �3�̂��̂−����: they give the fraction of molecules ori-

ented along the z axis �Qzz�; along the bisectors of the yz, xz,
and xy quadrants �Qyz, Qxz, and Qxy, respectively�; and the
difference between the fractions of molecules oriented along
the x and y axes �Qxx−Qyy�. In the case under study, there is
no twist; i.e., the director is confined to a plane that we can
take as the xz plane and ��z�=��z�=0. The three remaining
order parameters ��z�, ��z�, and ��z� are in general all non-
zero owing to surface-induced biaxiality; see our earlier
work for 
S=
 �13�. This effect has not been neglected in the
present treatment, but in what follows we show results for
��z�=Qzz only, as we wish to concentrate on the planar-to-
homeotropic transition.

IV. RESULTS

We start by calculating the phase diagram of HGOs to
check the quality of the Parson-Lee density rescaling of On-

sager’s theory. From the bulk version of Eq. �7� �i.e., with all
spatial integrations extended to �� and VHNW�z ,��=0�, we
have found the pressure and the chemical potential of the I
and N phases and performed the standard double-tangent
construction. Both the angle-averaged second virial coeffi-
cient �for the I phase� and the angle-dependent excluded vol-
ume �for the N phase� are known analytically �see, e.g.,
�38��. The remaining integrations over �i were carried out by
16-point Gauss-Legendre quadrature.

Figure 1 shows the phase diagram, in terms of the reduced
density, �*=��0

3, versus elongation 
; we have also included
the Onsager theory results of �13� and coexistence points as
determined by Gibbs-Duhem integration �22�. It is seen that,
as expected, the present theory performs much better than the
earlier one for smaller 
. Both the location and the width of
the I-N transition are quantitatively predicted down to 


5, and even for 
=3 the discrepancy between theory and
simulation is only about 10%. This should be contrasted with
Onsager theory, which only becomes comparably accurate
for 
�10. The data of Fig. 1 are also consistent with the
findings of Camp et al. �39�, who carried out a similar �but
more thorough� analysis for the HE fluid. We are thus reas-
sured that it is sensible to perform comparison of theory and
simulation results for the confined HGO fluid at the same
values of the density.

Equation �9� was solved iteratively for ��z ,�� by the Pi-
card method, with an admixture parameter of 0.9 �i.e., 90%
of “old” solution in each iteration�, starting from a uniform
and isotropic profile. Following Chrzanowska �40�, most in-
tegrations were performed by Gauss-Legendre quadrature us-
ing 64 z points �the minimum necessary to resolve the struc-
ture of the profiles at the higher densities considered� and
16�16 � points �for consistency with the bulk calculation�.

Note that the range of �� depends on z�: the closer a
particle is to a substrate, the fewer orientations are acces-
sible. In order to achieve good accuracy, it is nevertheless
crucial to include the same number of points in the angular

2 3 4 5 6 7 8 9 10 11 12
κ

0.0

0.1

0.2

0.3

0.4

0.5

ρ∗

N

I

FIG. 1. I-N phase diagram of the HGO fluid: �*=��0
3 and 
 are

the reduced density and the elongation, respectively. Solid lines:
Onsager theory with Parsons-Lee density rescaling. Dashed lines:
Onsager theory �13�. Solid squares: MC simulation results �22�.
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integrations for all z� �40�. Convergence was deemed to have
been achieved when the error, defined as the square root of
the sum of the squared difference between consecutive iter-
ates at 64�16�16=16 384 points, was less than 10−3. The
density and order parameter profiles were then calculated
from Eqs. �12�–�17�, respectively.

All simulations were performed in the canonical �NVT�
ensemble. The systems were periodic in the x and y direc-
tions, along which the simulation box lengths were deter-
mined for each imposed number density �* through the re-
lationship Lx=Ly =�N / ��*Lz�. Typical run lengths at each
state point were 0.5�106 MC sweeps �where one sweep
represents one attempted move per particle� of equilibration
followed by a production run of 0.5�106 sweeps. Initial
analysis of the surface-induced structural changes has been
performed using profiles of the number density �*�z�, the
orientational order measured with respect to the substrate
normal,

Qzz�z� =
1

N�z� �i=1

N�z� �3

2
ui,z

2 −
1

2
� , �18�

where N�z� is the instantaneous occupancy of the layer, and
of the �uniaxial� orientational order parameter is in the direc-
tor frame, �P2��z�.

Here, we consider two sets of simulations of 
=3 HGO
particles confined between hybrid-anchoring substrates. First
are systems with one strongly homeotropic substrate �
S�
=0� and one which favors either weakly homeotropic �
S�
=0.2�, bistable �
S�=0.5�, or planar �
S�=0.8� alignment. For
these, we present data from simulation sequences performed
employing N=1000 particles with wall separations Lz
=4
�0. Subsequently, we address systems with one strongly
planar substrate and one strongly homeotropic substrate, and
investigate the effect of film thickness on the resultant align-
ment states. Specifically, we consider systems with Lz
=4
�0 and N=1000, Lz=6
�0 and N=1250, and Lz=8
�0
and N=2000.

The three sets of �*�z�, Qzz�z�, and �P2��z� profiles ob-
tained for the first of these studies are plotted in Figs. 2–4. In
all cases the interfacial regions at the top �i.e., large-z� sub-
strate �
S�=0.0� exhibit features typical of strong homeotro-
pic anchoring, which is a strong density peak immediately at
the substrate, with orientational order aligned along the z
axis. At low density ��=0.28� the equivalent profiles in the
bottom �i.e., small-z� substrate regions correspond reason-
ably to those substrates’ inherent anchoring properties. In
both simulation and DFT, these surface effects do not extend
into the bulk part of the slab and, therefore, the pairs of
interfacial regions exert little influence on one another. As
the number density is increased into the bulk nematic phase,
however, orientational order develops across the whole of the
the cell width, such that the bulk region comes under com-
peting influences of both surfaces. We note that, particularly
for these thin simulated films, the bulk-region order-
parameter values observed are lower than those found in
bulk systems run at given �. This arises simply due to the
ability of the simulated particles to hide parts of their volume

in the substrates, such that the bulk densities achieved in
these systems are generally lower than the stated � values.

The question naturally arises of whether a true I-N tran-
sition still exists in this small �Lz=4
�0� system. The critical
point for capillary nematization of both hard spherocylinders
of length to ratio 15 and Zwanzig hard rods was set at around
two particle lengths by van Roij and co-workers �41�. On the
other hand, de las Heras, Velasco, and Mederos �42� did find
a critical pore width of about four particle lengths, but note
that there need be no contradiction between their results and

0 2 4 6 8 10 12
z/σ0

0.0

0.2

0.4

0.6

0.8

1.0

<P
2>

(z
)

0 2 4 6 8 10 12
−0.5

0.0

0.5

1.0

Q
zz

(z
)

0 2 4 6 8 10 12
0.0

0.5

1.0

1.5

2.0

2.5

ρ∗ (z
)

ρ*
=0.28, theory

ρ*
=0.34, theory

ρ∗
=0.28, simulation

ρ∗
=0.34, simulation

FIG. 2. Reduced density �*�z� �top�, order parameter Qzz�z�
�middle�, and order parameter �P2��z� �bottom� profiles for a hybrid
film of HGO particles of elongation 
=3 and needle length 
S�
=0.2 on the small-z �or bottom� substrate and 
S�=0.0 on the large-z
�or top� substrate, for �

bulk
* =0.28 �solid line and open circles� and

�
bulk
* =0.34 �dashed line and solid squares�. Lines are from theory;

symbols are from simulation. The lower density lies in the I phase,
the higher density in the N phase. See the text for details.
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1.0
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0 2 4 6 8 10 12
−0.5

0.0

0.5
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Q
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FIG. 3. Same as Fig. 2, but for 
S�=0.5 at the small-z
substrate.
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those of Van Roij and co-workers, since the two groups per-
formed calculations and simulations on spherocylinders of
very different aspect ratios and used different surface poten-
tials. Our theoretical curves in Figs. 2 and 3 clearly show two
distinct phases, isotropic and nematic, at the lower and
higher densities, respectively. At the lower density the order
parameter is clearly zero in the central part of the film and
the density profile is fairly structureless, unlike at the higher
density. Admittedly the nematic phase is not very strongly
ordered and the pore width may be subcritical.

In two of the three cases considered �
S�=0.2 and 
S�
=0.5�, the profiles indicate a smooth transition between the
two surface arrangements, with little variation in �P2��z� and
almost linear changes in �*�z� and Qzz�z� being seen in the
bulk regions. For 
S�=0.8, however, there is a clear drop in
�P2��z� in a localized z range, which suggests a discontinuity,
perhaps somewhat rounded, because the system is probably
subcritical; see discussion in preceding paragraph. This is
consistent with the configuration snapshots of Fig. 5: the low
values of �P2��z� might be understood by the presence of
particles with very different orientations in the same slice
�although one should be careful not to read too much into an
instantaneous configuration�. This effect is not apparent from
the Qzz�z� profile, though, as similar values could be obtained
from a slice of n particles with �	� /4 and a slice of equal
number of particles with �	0 and �	� /2. If real, the above
discontinuous transition is similar to that reported earlier by
two of us �12�: in both cases, when the anchorings at the two
walls are of very different strengths, the tilt angle varies
smoothly �as in Figs. 2 and 3�, but when they are of compa-
rable strengths, then there is a transition to a regime where
the tilt angle does not vary smoothly �as in Fig. 4�. Note that
it is essential that films be sufficiently thin in order to exhibit
this kind of behavior �43,44�; the qualitative dependance on
film thickness will be discussed later.

Overall agreement between theory and simulation is good
at the lower density for all needle lengths. At the higher
density, theory succeeds in capturing both the positional and

orientational structure observed in the simulated films. How-
ever, quantitative agreement deteriorates somewhat as the
film anchorings are made more hybrid—i.e., as the bottom
wall 
S� value is increased. When this parameter is set at 
S�
=0.2, the heights and numbers of peaks and troughs are
fairly well predicted, but their positions are slightly shifted.
For 
S�=0.5, the theory predicts a somewhat more structured
density, and a higher degree of orientational order, in the
lower half of the film �adjacent to the bistable wall� than is
present in the simulation data. Then for 
S�=0.8 agreement
again improves throughout the system. The fact that the sec-
ond and third density peaks �and corresponding features in
the order parameter profiles� from theory are systematically
shifted away from the substrates is probably a consequence
of an overestimation of the strength of the nematic phase.

Next, we consider systems in which the substrate condi-
tions were held fixed at strongly planar �
S�=1.0� and
strongly homeotropic �
S�=0.0�, but the film thickness was
varied. This required increasing the number of particles in
the system, in order to avoid interactions between particles
and their images. We took Lz=4
�0, Lz=6
�0, and Lz
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FIG. 4. Same as Figs. 2 and 3, but for 
S�=0.8 at the small-z
substrate.

FIG. 5. �Color online� Configuration snapshots for hybrid films
with strong homeotropic anchoring at the top substrate �
S�=0.0�.
Bottom substrate: �a� and �b� weakly homeotropic �
S�=0.2�, �c� and
�d� bistable �
S�=0.5�, and �e� and �f� planar �
S�=0.5�. Snapshots
�a�, �c�, and �e�, on the left, correspond to the bulk isotropic phase
��*=0.28�; �b�, �d�, and �f�, on the right, to the bulk nematic phase
��*=0.34�.
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=8
�0 and N=1000, N=1250, and N=2000, respectively.
For the largest of these, the number of z points in the DFT
calculation also had to be increased to 100 and Gauss-
Chebyshev quadrature was used. Typical profiles obtained at
the nominally nematic density of �*=0.35 are shown in Fig.
6 where, for comparison purposes, the z coordinates have
been scaled by Lz.

Not surprisingly, both theory and simulation predict that
the discontinuous director field observed for the 
S�=0.8 sys-
tem above is also exhibited by the thinnest of these strongly
anchored systems. This is most clearly apparent from the
marked minima seen in the corresponding �P2��z� profiles.
For the two thicker systems, however, theory and simulation
are in disagreement; theory continues to predict the discon-
tinuous behavior, whereas the simulations exhibit bent direc-
tor arrangements in which the director varies smoothly from
planar to homeotropic as the film is traversed. The profiles
obtained for these continuous bent director arrangements are
characterized by extended regions in the bulk of the confined
films in which the density and nematic order profiles are
virtually flat, while the Qzz�z� profile varies linearly. Indeed,
when plotted in terms of the scaled length z /Lz it is striking
that these two Qzz�z� profiles are effectively identical away
from the structural oscillations at each wall. The bent-
director structures represented by these profiles are exhibited
particularly clearly by the associated configuration snapshots
shown in Fig. 7.

The observation of two distinct profile structures in these
simulations is consistent with there being a critical film
thickness at which the transition between the two arrange-
ments takes place. For this particular set of wall-particle in-
teraction parameters, this critical thickness appears to lie be-

tween 4
�0 and 6
�0. This result places a finite limit on the
theoretical prediction �43,44� that hybrid anchored films with
a thickness of only a few molecular lengths do not exhibit a
continuous bent-director structure. It is also consistent with
the experimental observation of Vanderbrouck et al. �5� that
thin films of 5CB spun-cast onto a silicon wafer, and thus
having hybrid anchoring conditions, are stable only if their
thickness is greater than 20 nm.

In contrast, our DFT was not able to recover the
continuous-bend configuration for these systems: all theory
�P2��z� profiles exhibit a region of depressed order in the
bulk, which shrinks in extension as Lz increases, but is still
present in the thickest film, Lz=8
�0. Comparing the DFT
and simulation profiles here, it is evident that the density
oscillations given by DFT are somewhat overestimated, with
peak positions systematically shifted farther away from the
substrates than those found in the equivalent simulations.
This suggests that theory overestimates the extent of the po-
sitional structure adopted by these systems. The failure to
observe a critical thickness here is certainly consistent with
the notion that the effective anchoring strengths pertinent to
the DFT systems are greater than those in the simulation
systems. Since anchoring strength emerges from complex
many body packing and layering effects, however, it is not
surprising that our second-virial level DFT has this property.

V. CONCLUSIONS

In this paper we have presented a combined MC simula-
tion and DFT treatment of a HGO hybrid aligned fluid con-
fined between parallel substrates. The anchoring can be
tuned independently at either substrate by varying the extent
to which a particle is allowed to penetrate it. The Onsager
approximation, combined with a simple Parsons-Lee density
rescaling, can in some cases yield semiquantitative predic-
tions for the density and orientational distribution of particles
of elongation as small as 
=3. Many of our profiles exhibit

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
z/Lz

0.0

0.2

0.4

0.6

0.8

1.0

<P
2>

(z
)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−0.5

0.0

0.5

1.0

Q
zz

(z
)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.5

1.0

1.5

2.0

2.5

ρ∗ (z
)

Lz=12σ0
Lz=18σ0

Lz=24σ0

FIG. 6. Reduced density �*�z� �top�, order parameter Qzz�z�
�middle�, and order parameter �P2��z� �bottom� profiles for a hybrid
film of HGO particles of elongation 
=3 and needle length 
S�
=1.0 on the small-z �bottom� substrate and 
S�=0.0 on the large-z
�top� substrate, for �

bulk
* =0.35. Solid line and open circles: Lz

=4
�0. Dashed line and solid squares: Lz=6
�0. Dotted line and
crosses: Lz=8
�0. Lines are from theory; symbols are from
simulation.

FIG. 7. �Color online� Typical configuration snapshots of hybrid
films of HGO particles of elongation 
=3, using the HNW surface
potential with 
S�=1.0 �bottom� and 
S�=0.0 �top�. �a� Lz=4
�0 and
N=1000 particles, �b� Lz=6
�0 and N=1250 particles, and �c� Lz

=8
�0 and N=2000 particles. In all cases, �
bulk
* =0.35.
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fairly strong oscillations, which are indicative of layering
phenomena and are expected if the demsity is not very low—
i.e., deeper into the N phase than the immediate vicinity of
the I-N transition. The same qualitative behavior was re-
ported by de las Heras, Velasco, and Mederos et al. �42�,
who went deep into the N phase, but not by Van Roij and
co-workers �41�, who were interested mostly in the I-N tran-
sition. Neither of these sets of authors, however, considered
hybrid aligned films as we do here. Furthermore, the solution
procedure also yields the free energy, thus making it possible
to derive the effective interaction between substrates. This
will be the subject of future work. More sophisitcated theo-
retical approaches are of course available, such as a
weighted-density �35,45� or fundamental-measure �46� ap-
proximation, which would very likely be more accurate, but
are also highly nontrivial to implement.

The current theory appears very able to capture the com-
plex positional and orientational structure adopted within the
thin LC films considered here. As such, it represents a sig-
nificant advance of the type recently called for by Delabre
and co-workers �7�. In the systems we investigated, the
theory appears able to describe the discontinuous structural
transition between the two main hybrid anchored states, al-
though the critical thickness is overestimated. This latter
point is to be expected though, as this thickness depends

crucially on the anchoring strengths at the two substrates.
More precise tuning of this would require direct calculation
of the HNW anchoring energy, along the lines of the studies
reported in �28,47�. The possible interplay between this and a
capillary nematization transition also needs to be investi-
gated by mapping the full phase diagram of the confined
fluid.

Finally, we note that the theory presented here can be
straightforwardly generalized to more sophisticated confine-
ment geometries or surface interactions, and also to mixtures
of two or more types of hard body. As such, it could be used
to determine effective interparticle interactions for a range of
colloid-in-LC suspensions. One can alternatively envisage
the same approach being used to study the potentially very
rich behavior of a confined binary LC mixture in which the
two components have different easy axes at either substrate.
This work is in progress and will be reported elsewhere.
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